

Research Concept: B-*N*-Methylamino-L-alanine

Mike Sanders, Ph.D.

NIEHS/NTP

NTP Board of Scientific Counselors Meeting

November 20-21, 2008

B-N-Methylamino-L-alanine (L-BMAA)

- Nominated by NIEHS based on:
 - Potential for widespread human exposure
 - Evidence of neurotoxicity in animals
- Produced by cyanobacteria (blue-green algae):
 - Found in marine, freshwater, and terrestrial environments
- Potential human exposure to L-BMAA:
 - Algae blooms
 - Bioconcentrated in plants and animals consumed as food
 - May be present in some blue-green algae dietary supplements

$$H_3C-N$$
 NH_2
OH

Toxicity

- Toxic to motor neurons in vitro
- Causes neurotoxicity in animals at high doses:
 - Chickens (inability to stand)
 - Rats and mice (weakness and convulsions)
 - Monkeys (tremor, weakness, behavioral changes, degeneration of motor neurons)
- Neurotoxicity in humans linked to L-BMAA exposure?
 - Specific population: High incidence of amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) on Guam linked to exposure to L-BMAA in cultural diet
 - ALS: Progressive limb weakness and degeneration of motor neurons
 - PDC: Tremor, slowed movement, rigidity, cognitive dysfunctions
 - General population? L-BMAA detected in brain tissue of some Alzheimer's patients

Mechanism of Action

- Acute toxicity: Glutamate receptor agonist
 - Glutamate is the predominant excitatory neurotransmitter in vertebrates. Excess receptor ligand = excitotoxicity
 - Beta-N-oxalylamino-L-alanine (L-BOAA) activates glutamate receptors and is linked to neurotoxicity in humans
- OH Glutamate
 - OH NH₂ OH L-BOAA

L-BMAA is activated by carboxylation:

$$H_3C-N$$
 OH + CO_2 HO NH_2 OH Carboxy adduct

- Proposed mechanism of latent and progressive neurotoxicity in humans:
 - L-BMAA incorporated into proteins of brain and other neural tissues
 - Damages neuroproteins and/or serves as a reservoir for continuous low-level exposure of the active metabolite to motor neurons

Data Gaps and Key Issues

- Extent of exposure to humans is uncertain
 - Environment?
 - Dietary Supplements?
- Risk to humans following exposure is uncertain
 - L-BMAA may be more potent than previously indicated
 - Damages specific neurons and potentiates neuronal injury at μM concentrations
 - The fate of L-BMAA has not been adequately characterized in an animal model
 - Data describing accumulation, protein interactions, and persistence in tissues are needed to assess the proposed mechanism of toxicity in humans

Proposed Research Program

- Goal: To further the toxicological characterization of L-BMAA
- Specific Aim 1: Conduct metabolism and disposition (ADME) studies of ¹⁴C-labeled L-BMAA in rodents
 - Quantitate internal dose
 - Determine extent and nature of interaction with proteins
 - Determine elimination kinetics
- Specific Aim 2: Further assess the biological activity of L-BMAA
 - Use in vitro techniques and compare with other neurotoxins
- Specific Aim 3: Analyze for the presence of L-BMAA in samples of bluegreen algae supplements

Significance and Outcome

- These studies would:
 - Provide data for assessing the proposed mechanism of neurotoxicity
 - Provide additional information about biological activity
 - Determine if dietary supplements are a source of exposure
- These data would be used for:
 - Assessing risk of exposure
 - Public health guidance
 - Determining the need for toxicity testing

Questions and Comments